首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1474篇
  免费   68篇
  国内免费   1篇
  2023年   5篇
  2021年   19篇
  2020年   13篇
  2019年   23篇
  2018年   25篇
  2017年   15篇
  2016年   43篇
  2015年   60篇
  2014年   68篇
  2013年   99篇
  2012年   124篇
  2011年   93篇
  2010年   63篇
  2009年   48篇
  2008年   116篇
  2007年   96篇
  2006年   70篇
  2005年   81篇
  2004年   81篇
  2003年   80篇
  2002年   88篇
  2001年   13篇
  2000年   13篇
  1999年   12篇
  1998年   13篇
  1997年   14篇
  1996年   14篇
  1995年   9篇
  1994年   13篇
  1993年   7篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   11篇
  1983年   12篇
  1982年   9篇
  1981年   12篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1968年   2篇
排序方式: 共有1543条查询结果,搜索用时 15 毫秒
101.
Periapical granulomas are lesions around the apex of a tooth caused by a polymicrobial infection. Treatment with antibacterial agents is normally performed to eliminate bacteria from root canals; however, loss of the supporting alveolar bone is typically observed, and tooth extraction is often selected if root canal treatment does not work well. Therefore, bacteria and other microorganisms could be involved in this disease. To understand the pathogenesis of periapical granulomas more precisely, we focused on the association with Epstein-Barr virus (EBV) using surgically removed periapical granulomas (n = 32). EBV DNA was detected in 25 of 32 periapical granulomas (78.1%) by real-time PCR, and the median number of EBV DNA copies was approximately 8,688.01/μg total DNA. In contrast, EBV DNA was not detected in healthy gingival tissues (n = 10); the difference was statistically significant according to the Mann-Whitney U test (p = 0.0001). Paraffin sections were also analyzed by in situ hybridization to detect EBV-encoded small RNA (EBER)-expressing cells. EBER was detected in the cytoplasm and nuclei of B cells and plasma cells in six of nine periapical granulomas, but not in healthy gingival tissues. In addition, immunohistochemical analysis for latent membrane protein 1 (LMP-1) of EBV using serial tissue sections showed that LMP-1-expressing cells were localized to the same areas as EBER-expressing cells. These data suggest that B cells and plasma cells in inflamed granulomas are a major source of EBV infection, and that EBV could play a pivotal role in controlling immune cell responses in periapical granulomas.  相似文献   
102.
Amyloid β (Aβ)-induced neurotoxicity is a major pathological mechanism of Alzheimer’s disease (AD). Our previous studies have demonstrated that schisandrin B (Sch B), an antioxidant lignan from Schisandra chinensis, could protect mouse brain against scopolamine- and cisplatin-induced neuronal dysfunction. In the present study, we examined the protective effect of Sch B against intracerebroventricular (ICV)-infused Aβ-induced neuronal dysfunction in rat cortex and explored the potential mechanism of its action. Our results showed that 26 days co-administration of Sch B significantly improved the behavioral performance of Aβ (1–40)-infused rats in step-through test. At the same time, Sch B attenuated Aβ-induced increases in oxidative and nitrosative stresses, inflammatory markers such as inducible nitric oxide syntheses, cyclooxygenase-2, interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and DNA damage. Several proteins such as receptor for advanced glycation end products (RAGE), nuclear factor-κB, mitogen-activated protein kinases, and apoptosis markers were over expressed in Aβ-infused rats but were significantly inhibited by Sch B treatment. Furthermore, Sch B negatively modulated the Aβ level with simultaneous up-regulation of HSP70 and beclin, autophagy markers in Aβ-infused rats. The aforementioned effects of Sch B suggest its protective role against Aβ-induced neurotoxicity through intervention in the negative cycle of RAGE-mediated Aβ accumulation during AD patho-physiology.  相似文献   
103.
Stress induces various responses, including translational suppression and tRNA degradation in mammals. Previously, we showed that heat stress induces degradation of initiator tRNAMet (iMet) through 5′–3′ exoribonuclease Xrn1 and Xrn2, respectively. In addition, we found that rapamycin inhibits the degradation of iMet under heat stress conditions. Here, we report that the mammalian target of rapamycin (mTOR) regulates the diffusion of Xrn2 from the nucleolus to the nucleoplasm, facilitating the degradation of iMet under conditions of heat stress. Our results suggest a mechanism of translational suppression through mTOR-regulated iMet degradation in mammalian cells.  相似文献   
104.
Neutrotrophin-3 (NT3) plays a protective role in injured central nervous system tissues through interaction with trk receptors. To enhance the regeneration of damaged tissue, a combination therapy with cell transplantation and neurotrophins has been under development. We examined whether the transplantation of neural progenitor cells (NPCs) secreting NT3/D15A, a multi-neurotrophin with the capacity to bind both trkB and trkC, would enhance the repair of damaged tissues and the functional recovery in a chronic phase of spinal cord injury. The cultured NPCs with lentiviral vector containing either GFP or NT3/D15A were transplanted into the contused spinal cord at 6 weeks after the initial thoracic injury. Eight weeks after the transplantation, the NT3/D15A transplants displayed better survival than the GFP transplants, and they exhibited enhanced myelin formation and partial improvement of hindlimb function. Our study revealed that NT3/D15A produced positive effects in injured spinal cords even in the chronic phase. These effects suggest an enhanced neurotrophin-trk signaling by NT3/D15A.  相似文献   
105.
YddV from Escherichia coli (Ec) is a novel globin-coupled heme-based oxygen sensor protein displaying diguanylate cyclase activity in response to oxygen availability. In this study, we quantified the turnover numbers of the active [Fe(III), 0.066 min(-1); Fe(II)-O(2) and Fe(II)-CO, 0.022 min(-1)] [Fe(III), Fe(III)-protoporphyrin IX complex; Fe(II), Fe(II)-protoporphyrin IX complex] and inactive forms [Fe(II) and Fe(II)-NO, <0.01 min(-1)] of YddV for the first time. Our data indicate that the YddV reaction is the rate-determining step for two consecutive reactions coupled with phosphodiesterase Ec DOS activity on cyclic di-GMP (c-di-GMP) [turnover number of Ec DOS-Fe(II)-O(2), 61 min(-1)]. Thus, O(2) binding and the heme redox switch of YddV appear to be critical factors in the regulation of c-di-GMP homeostasis. The redox potential and autoxidation rate of heme of the isolated heme domain of YddV (YddV-heme) were determined to be -17 mV versus the standard hydrogen electrode and 0.0076 min(-1), respectively. The Fe(II) complexes of Y43A and Y43L mutant proteins (residues at the heme distal side of the isolated heme-bound globin domain of YddV) exhibited very low O(2) affinities, and thus, their Fe(II)-O(2) complexes were not detected on the spectra. The O(2) dissociation rate constant of the Y43W protein was >150 s(-1), which is significantly larger than that of the wild-type protein (22 s(-1)). The autoxidation rate constants of the Y43F and Y43W mutant proteins were 0.069 and 0.12 min(-1), respectively, which are also markedly higher than that of the wild-type protein. The resonance Raman frequencies representing ν(Fe-O(2)) (559 cm(-1)) of the Fe(II)-O(2) complex and ν(Fe-CO) (505 cm(-1)) of the Fe(II)-CO complex of Y43F differed from those (ν(Fe-O(2)), 565 cm(-1); ν(Fe-CO), 495 cm(-1)) of the wild-type protein, suggesting that Tyr43 forms hydrogen bonds with both O(2) and CO molecules. On the basis of the results, we suggest that Tyr43 located at the heme distal side is important for the O(2) recognition and stability of the Fe(II)-O(2) complex, because the hydroxyl group of the residue appears to interact electrostatically with the O(2) molecule bound to the Fe(II) complex in YddV. Our findings clearly support a role of Tyr in oxygen sensing, and thus modulation of overall conversion from GTP to pGpG via c-di-GMP catalyzed by YddV and Ec DOS, which may be applicable to other globin-coupled oxygen sensor enzymes.  相似文献   
106.
107.
The heme oxygenase (HO) reaction consists of three successive oxygenation reactions, i.e. heme to alpha-hydroxyheme, alpha-hydroxyheme to verdoheme, and verdoheme to biliverdin-iron chelate. Of these, the least understood step is the conversion of verdoheme to biliverdin-iron chelate. For the cleavage of the oxaporphyrin ring of ferrous verdoheme, involvement of a verdoheme pi-neutral radical has been proposed. To probe this hypothetical mechanism in the HO reaction, we performed electrochemical reduction of ferrous verdoheme complexed with rat HO-1 under anaerobic conditions. On the basis of the electrochemical spectral changes, the midpoint potential for the one-electron reduction of the oxaporphyrin ring of ferrous verdoheme was found to be -0.47+/-0.01 V vs the normal hydrogen electrode (NHE). Because this potential is far lower than those of both flavins of NADPH-cytochrome P450 reductase, and of NADPH, it is concluded that the one-electron reduction of the oxaporphyrin ring of ferrous verdoheme is unlikely to occur and that the formation of the pi-neutral radical cannot be the initial step in the degradation of verdoheme by HO. Rather, it appears more reasonable to consider an alternative mechanism in which binding of O(2) to the ferrous iron of verdoheme is the first step in the degradation of verdoheme.  相似文献   
108.
109.
Evolutionary control of leaf element composition in plants   总被引:5,自引:1,他引:4  
Leaf nitrogen (N) and phosphorus (P) concentrations are correlated in plants. Higher-level phylogenetic effects can influence leaf N and P. By contrast, little is known about the phylogenetic variation in the leaf accumulation of most other elements in plant tissues, including elements with quantitatively lesser roles in metabolism than N, and elements that are nonessential for plant growth. Here the leaf composition of 42 elements is reported from a statistically unstructured data set comprising over 2000 leaf samples, representing 670 species and 138 families of terrestrial plants. Over 25% of the total variation in leaf element composition could be assigned to the family level and above for 21 of these elements. The remaining variation corresponded to differences between species within families, to differences between sites which were likely to be caused by soil and climatic factors, and to variation caused by sampling techniques. While the majority of variation in leaf mineral composition is undoubtedly associated with nonevolutionary factors, identifying higher-level phylogenetic variation in leaf elemental composition increases our understanding of terrestrial nutrient cycles and the transfer of toxic elements from soils to living organisms. Identifying mechanisms by which different plant families control their leaf elemental concentration remains a challenge.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号